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Energy focusing inside a dynamical cavity
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We study the exact classical solutions for a real scalar field inside a cavity with a wall whose motion is
self-consistently determined by the pressure of the field itself. We find that, regardless of the system param-
eters, the long-time solutioalways becomes nonadiabatic and the field’s energy concentrates into narrow
peaks, which we explain by means of a simple mechanical system. We point out implications for the quantized
theory.

PACS numbeps): 42.65.5f, 42.60.Da, 03.50z

The dynamics of confined cavity fields interacting with $=0 at x=0,
the cavity wall is of great interest for the understanding of a (4)
variety of problems such as hadron bag modgls sonolu-
minescencd 2], cavity QED[3], and black hole radiations é=—R¢, at x=R.

[4]. Previous works have mostly approached the problem

assuming an externally imposed wall motion, neglecting the Notice the dependence dh of the boundary conditions.
effects of the radiation pressure, or used the adiabatic aps #(R)=0 is imposed, the total energy, which is conserved
proximation[5,6]. In this paper we study, without any ap- for a static cavity, is no longer constant far: 0. Equation
proximation, the dynamics of a real scalar field inside a cav(z) is satisfied by<'j>(x t) with
ity, the wall of which moves according to the combined force '
of a static potential/(R) and the field pressure. This system d(X,t)=G(t—x)+ G(t+Xx) (5)
bears important resemblances to more complicated ones,
such as the Dirac and electromagnetic fields, since they caghd the positive sign between the t@&s ensures that the
be partially or completely cast in the form of a wave equa-first boundary condition of Eqg4) is met. Substituting Eq.
tion. Moreover the classical solutions should be a good ap¢5) in the second of Eqg4) we obtain
proximation to the quantized fields at least in the case of a 1-R(t)
large number of field quanta. As an initial condition for the G'[t+R(t)]= .
field we always consider a normal mode of the static cavity. 1+R(1)
This is in fact a common situation in the study of many For prescribed wall motiorn(z) for any z can be found
physical systems. by using Eq.(6) and the null line metho@5]. It is assumed
We find that in general the system evolves nonadiabatithat the cavity is static for<t, with a lengthR(ty). This is
cally, and the field energy concentrates into narrow peaksquivalent to saying that there is a static zanez,=t,
This phenomenon can be understood with the help of a-R(ty), in which G(z) is analytically known. One can find
simple classical mechanical system. the values of5(z>z,) outside the static zone by first solving
In the present work we use natural units and hence thene algebraic equation=teq,+ R(teq,) for teqyand then find-
action S is dimensionless as are the velocities. This simplying z_=tq,— R(teq). This process, which is equivalent to
means that, although we are dealing with a classical systengonstructing a null line connecting the poitandz_, can
for convenience the action is taken in unitsiofin one space be repeated many times until a poimtin the static zone is
dimension and with the field only inside the cavity, the sys-reached. The values @(z) and G(z,) are related through
tem is defined by the action Eq. (6). However, in the case under study, we do not have, in
general, a static zone, and we need to verify that knowing the
initial conditions of the system is enough to implement the
vt R 1 , above method.
S= fodt > MR —V(RHL dxgldv =il (D We will show that in order to findp(x,t+dt) with 0
<x=sR(t+dt), it is necessary and sufficient to knd@(z)
andG’(z) for t—R(t)<z=t+R(t) andR(t’) for t<t’'<t
+dt. That is just what is required in order to have a unique
solution of the system of two second order equati@snd

G'[t—R(1)]. (6)

Imposing 6§=0 under any variation of the dynamical
variables that vanishes Ht=0 andt’ =t we obtain

(3).
Sincegp(x,t+dt)=G(t+dt—x)+ G(t+dt+x), we need
NR) 1 to find G(z) and G'(z) for t+dt—R(t+dt)<z<t+dt
MR+ —R §[¢>t2—¢§]x=R:0, (20  +R(t+dt). Now we have two cases: eithest+ R(t) or
z>t+R(1).

In the first case it is also true that
b~ =0, O0=x<R, ©) z=t+dt—R(t+dt)=t—R(t)
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as long asR<1, i.e., in all physical situations, so that we
already have the solution.

In the second case we have to solve the equatiety,,
+R(teqn), as explained previously. We have

t+ R(t) <teq+ R(teq) <t+dt+R(t+dt),
which, with R=—1, implies
t<teq=<t+dt.

Having foundt,, we can derives’(z) from Eq.(6) because,
with Zequteqv_ R(teqv)r

t—R(1)<zeq=t+R(1) |RI<1,

so that again we have the necessary information to determine $

the evolution of the fieldG(z) can then be obtained by the
numerical integration of3’(z). Note, however, that while
R=1 still admits a solution for the fieldR=—1 does not,
because the boundary conditidBC) requires G'[t+dt
—R(t+dt)]=G’'[t+2dt—R(t)]=0, which in general is in-
consistent. Evolving backward in time, i.e., withi<O, the
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FIG. 1. (a) Wall position,(b) wall velocity, (c) energy density of
the field atx=0 for a=100/r, 8= 1/(+/20).

opposite would be true. Using the procedure above we have 897R(to) in Fig. 2 compared with the static cavity solu-

studied the case witN'(R)=3K(R—R,)?, solving, step by
step, EQ.(2) numerically by a standard finite difference
method.

As an initial condition for the field we choose the funda-
mental mode of the static cavity with Eqgl) as the BC,

R(to) =R, andR(ty)=0:

¢=sinwty coswX,

()

¢¢= w COSwtyCOSwX, w=

For convenience we define the dimensionless parameters
and B: a=M/w, B=Q/w=+K/M/w, and we set the am-
plitude of the initial field to be 1. In the case of a wall
initially at rest and with a large mass compared to the initial

energy of the field, we expect the dynamics not to depart :
considerably from the adiabatic one, that is, the wal’'s mo- |  —-—-— t/R(1,)=0

tion should be well approximated by the solution of E2j,

with the field’s pressure term replaced by its static wall coun- 10

terpart and the solution of E@3) by

d(x,t)=sinw(t)t cosw(t)x, w(t)zm. (8)

In order to check the reliability of our numerical imple-
mentation of the algorithm, we first considered a large mas
of the wall[ a=1000/r, B=1/(10m/2)]. We verified that

the total energy is very well conserved and the motion of the

wall is well reproduced by the solution of ER) with the
static wall solution for the field pressure.

We then used a smaller mass keepiagonstant, i.e.q
=100/ and B=1/(m/20). As shown in Fig. 1, both the
wall motion and the field energy density become nontrivial.

tion. The two peaks at=697R(t;) move in opposite direc-
tions, and their widths decrease in time. This phenomenon is
even more evident withw=10/7 and B=1/(m\2) [Fig.
3(a)], showing a complex distribution of the peak locations
and heights. The total energy of the system is the same in all
cases.

Even for the case in Fig. (B) [a=1000f, g
=1/(10m+2)], for which we observed the adiabatic evolu-
tion lasting for a long time aftery, we can still, letting the
system evolve long enough, observe the squeezing of the
field energy density in spite of the slow motion of the wall.
Keeping K constant we found that the time at which the
focusing of the energy starts increases roughly linearly with
M. This suggests that, as one takes into account the back
reaction of the field on the wall motion, the long-time dy-
namics always becomes nonadiabatic. We have verified that

—————— t/R(1,)=349
1/R(1,)=697
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An interesting feature is the concentration of the energy den- FIG. 2. Spatial distribution of energy densityt&R(t,) =0 (dot-

sity, shown in Fig. {c). This is confirmed by the plot of the
energy density at two instances=349R(t;) and t

dasheg, 349 (dashed ling and 697(solid line) for a=100/r, B
=1/(m20).
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FIG. 3. Energy density of the field at=0 for (a) =10/, B tR(t,)
=1/(m/2), (b) «=1000fr, B=1/(10w/2). Notice the time inter-
vals. FIG. 4. Classical particles in a dynamical cavity, wi

=1000R(ty), 2=1/R(ty), and initial momenta 0.0R(ty). (a)

this remains true also changing the boundary conditions sBarticle momenta at=3221R(to). (b) Generalized energy density
that the field equals zero at the boundaries. atx=0.

We believe that the origin of this phenomenon lies in the
mechanism of energy exchange between the wall and th@ssuming that the sign @f’ is always opposite to the sign of
field. To explain it we give the following qualitative argu- P, Which is true as long as the speed of the wall is less than
ment. Let us consider the interaction between the wave inl and M(1—v")>p’ (p'>0).
side the cavity and the wall. At some instance, the peak of We consider first a set of 1000 particles all with the same
the wave will hit the wall, which can be moving either out- initial momentump; =0.01R(t,) and a wall initially at rest
ward or inward. In the former case, there will be a transfer ofwith M =1000R(t,) and )=1/R(to). Already after a few
energy from the field to the wall, and the speed of the wallinteractions with the wall we could observe a regular transfer
will increase slightly. The wave fronts following the peak Of energy from the last to the first particles to hit the wall. In
will lose more and more energy to the wall, since the wallFig. 4@ we show the momenta of the particles after a time
moves faster with each successive collision. As a result the=3221R(t,) as a function of their position. For clarity only
spatial width of the energy distribution decreases. When th@ositive momenta are plotted. It is remarkable that the first
wall moves inward, the wave gains energy from the wall,particle to hit the wall has gained more than one tenth of the
and the wave fronts following the peak gain less because th@tal energy of the system. The above is a very special situ-
wall moves slower with each successive collision. Again theation which, however, demonstrates the process of energy
width of the wave form decreases. After some time, thistransfer among particles.
effect leads to a drastic concentration of energy into narrow We then extend this simple mechanical model to the case
peaks. of an infinite number of particles labeled with a continuous

Our argument depends only on kinematics and shouldndexk, each having position(k) and momentunp(k)dk.
therefore be applicable not only to waves but many othein this way we can define an energy density
systems, such as a set of particles bouncing back and forth in
a dynamical cavity. For S|m_pI|C|ty we cons[der the dynamlc_s E(X,t)EJ dkp(k,t)|8[q(k,t)—x]. (10)
of a set of massless noninteracting particles, each having
momentum and energp;, |p;| (c=1). Inside the cavity o o S
they move unperturbed at the speed of light. If a particleNOt surprisingly&(x,t) satisfies the wave equation inside the
bounces on the static wall, its momentum changes sign. TheaVvity. We numerically simulate such a system choosing
movable wall is subjected to a harmonic potentiglR) 2000 partlcles. Initially, we put two partlcles_ at each of thg
= 1K(R—Ry)2. The particle momentum! and the wall ve- 1000 uniformly separatzed sites, and the pairs have opposite
locity v” after an interaction, which is assumed to be instanmementap(k) = =10 = cos mg(K)+1]. In Fig. 4b) we

2 . . . . . .
taneous, are easily derived from energy and momentum comlot E(0)R*(t), which is evidently similar to Fig. 1, al-
servation: though the details of the evolution depend on how the par-

ticles or the field interact with the wall.
v"=\(1+v")2+4p IM—1, After a long time we observe the formation of many
) smaller peaks in the energy density. Further work is needed
to understand the problem of thes evolution of the sys-
p”:p/‘l‘M(U/_U”), tem.
For the scalar field an important situation to study is when
wherev’ andp’ are the wall velocity and particle momen- Q= x/R,, i.e., when the wall motion is in resonance with the
tum before the collision. The above equations are derivedield inside the cavity. We have computed the solutions of
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FIG. 6. Energy density in a spherical cavityrat R(t) vs time

FIG. 5. (a) Wall position and(b) energy density in a resonant for a—5/4.4934 and3— 8/4.4934,

cavity with «=1000/ and 8=1.

which, however, for) translates to
Egs.(2) and(3) for various masses of the wall. In Fig. 5 we
plot the wall’'s position and the field energy densityxat0 : _ YR,
vs time in the case ofr=10004r, R(to)=R,, and R(to) RUALR(), 1= R(t) Yr[R(V), L. (12

=0.1. In this case we choos$g=R/2 so that$=0 and the - B .

initial functions Eq.(7) satisfy the boundary condition Egs. If we want ¢ to t_)e flr_nte atr=0 then we must requirgs
L i ) =0 at r=0, which is satisfied by writingyy)=G(t—r)

(_4) with R(tg) #0. In addltlon to the b_eats in the wall mo- — G(t+r). Equation(12) becomes

tion, two features are important. One is the fact that the wall

continues to return to its initial position after a tiie=R,.  G'[t+R(t)]— 7#G[t+R(t)]

This is different from the case of nonresonant wall param-

eters where the back reaction of the field changes the fre- 1-R

quency of the wall motion. Another remarkable effect, as a =y=—-—=G'[t=R()]-7CG[t—-R(t)], (13

consequence, is the appearance of narrow peaks typical of a 1+R

resonantly driven wall motiofb,7,9]. This indicates the pos- . . _

sibility of transferring a large amount of energy to the field With 7=1/R(1+R). An effective way to solve Eq13) nu-

even with an external, nonresonant, driving fofgel0]. As ~ Merically for G[t+R(t)] is to definez=t+R(t) and to ap-

long as the frequency of the cavity wall &= /Ry, it is proximate » and y with a constant_value betweenand z

enough to push the wall at the instances marked by the ar= dZ for a small enougfiiz. Integrating Eq(13) betweenz

rows in Fig. 5, and this frequency depends on the mass of th@hdz—dz we obtain

wall and can be much smaller thdb; increasing the mass

decreases the frequency of energy exchange between wall G(2)=

and field. This fact might help to bypass the experimental

difficulty of achieving a resonant driving force, i.e., at fre-

guency{}, on a mirror in order to produce high frequency

Y

e”dz—;, (14)

G(z—dz)+Z
n

which turns out to be more accurate than standard numerical

photons[8]. integration. . .
We have verified that for a small mass= 10/, the walll The2 force2 of 2the swave field on the wall isF,
period remains close tF=2R, so that the motion is still =2TR(t)[¢{—¢7]. ForR(tg)=0 we set as initial condi-

resonanf7]. In Ref.[7] it has been shown that the method of tions for the fields

null lines can also be applied to waves inside an oscillating .
Ccoswty SInwr

spherical cavity for any value of the angular momentum. B(rto)= ,

However, when considering a self-consistent wall motion, ’ R wr '

the spherical symmetry is achieved only in the cases of (15)
waves, for which the radial®) and angular parts can be ) )

separated. Defining/=r¢, so that satisfies the one- bl 1tg) = — wSinwty sinwr

dimensional wave equation, we can apply the null lines RS or '’

method. The boundary condition fap, derived from the
action similarly to Eqs(4), is wherew=4.4934R(t,) is chosen such thab(r,ty) satisfies
Eq. (11) with R(t)=0. As in the 1D case, we observe the
. formation of high energy density regions, although in 3D,
Re [ R(1),t]=— ¢, [R(1),t], (1)  this process is much slower. In Fig. 6 we plot the energy
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density at r=R(t) vs time for «=5/4.4934 andp For a quantized field previous work8] have shown that

= \/8/4.4934. These values of the parameters produce a corin the case of a prescribed slow wall motion no photon pro-
pletely nonadiabatic evolution. For largeror smallerK we  duction is achieved. Our results strongly suggest that the
have to evolve the system for a much longer time in order tdback reaction of the field may change significantly the evo-
observe the formation of high-energy peaks. However, weution of the system. In particular the second derivative of
have verified that imposingg=0 atr=R(t) the peaks ap- the wall position, which is one of the quantities that deter-
pear much earlier and the dynamics is very similar to themine the number of quan{®], can be much larger than in

one-dimensional situation. With resonant wall parametersy,e adiabatic case, as it can be seen from the sloy'kinf
Q=m/R(t), the features observed in 1D remain in 3D. gig 1. |f the initial number of fundamental mode quanta is
With the BC Eq.(11) it is also possible to have resonances|arge, the peaks in energy density in the classical solution
with () equal to the difference between the frequencies of the;, imply the production of several high-energy quanta.
nth mode and the fundamental mode of the cavity. However e have also studied the special situation in which the
such an(} is close ton/R(to) if nis large, and such reso- | frequency is equal to the fundamental frequency of the
nances are not easily distinguishable from the geometrigiatic cavity field. Remarkably the frequency of the wall mo-
ones[7]. _ . tion does not change due to the field pressure, and thus nar-
In summary we have applied the null lines method toroy peaks typical of a resonantly driven wall motion are
study the dynamics of a scalar field inside a cavity Whoseproduced. A large amount of energy may be transferred to
wall is subje_zcted to a harmonic force and the pressure du_e e field by providing mechanical energy to the wall when
the scalar field. We have found that the long time evolutionhe amplitude of the oscillation reaches its minimum. This
of the system is always nonadiabatic, regardless of the pgact might help to bypass the experimental difficulty of
rameters of the system. In particular there is an interval Oﬁchieving a resonant driving force on a mirror in order to
ti_me when the field develops narrow packets i_n energy de”produce high frequency photofig]. In a further work we
sity that bounce back and forth inside the cavity, which canygy|d ike to address the problem of whether periodical so-

be understood by means of a simple mechanical analog cofjtions are admitted for this kind of system and for which
sisting of a set of massless particles bouncing inside a ongz|yes of parameters.

dimensional box with a movable wall. Such a system con-

firms our hypothesis that the wall motion provides a We would like to thank Dr. C. K. Law for his interest in
mechanism of energy transfer from low- to high-energy re-the paper and valuable discussions. This work was partially
gions. We have verified that the focusing of energy is a rosupported by a Hong Kong Research Grants Council, Grant
bust phenomenon, being insensitive to the type of potentidNo. CUHK 312/96P, and a Chinese University Direct Grant
for the wall and the presence of an external driving force. (Project ID No. 2060098
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