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Energy focusing inside a dynamical cavity

K. Colanero and M.-C. Chu
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

~Received 7 March 2000!

We study the exact classical solutions for a real scalar field inside a cavity with a wall whose motion is
self-consistently determined by the pressure of the field itself. We find that, regardless of the system param-
eters, the long-time solutionalways becomes nonadiabatic and the field’s energy concentrates into narrow
peaks, which we explain by means of a simple mechanical system. We point out implications for the quantized
theory.

PACS number~s!: 42.65.Sf, 42.60.Da, 03.50.2z
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The dynamics of confined cavity fields interacting wi
the cavity wall is of great interest for the understanding o
variety of problems such as hadron bag models@1#, sonolu-
minescence@2#, cavity QED @3#, and black hole radiations
@4#. Previous works have mostly approached the prob
assuming an externally imposed wall motion, neglecting
effects of the radiation pressure, or used the adiabatic
proximation @5,6#. In this paper we study, without any ap
proximation, the dynamics of a real scalar field inside a c
ity, the wall of which moves according to the combined for
of a static potentialV(R) and the field pressure. This syste
bears important resemblances to more complicated o
such as the Dirac and electromagnetic fields, since they
be partially or completely cast in the form of a wave equ
tion. Moreover the classical solutions should be a good
proximation to the quantized fields at least in the case o
large number of field quanta. As an initial condition for th
field we always consider a normal mode of the static cav
This is in fact a common situation in the study of ma
physical systems.

We find that in general the system evolves nonadiab
cally, and the field energy concentrates into narrow pea
This phenomenon can be understood with the help o
simple classical mechanical system.

In the present work we use natural units and hence
actionS is dimensionless as are the velocities. This sim
means that, although we are dealing with a classical sys
for convenience the action is taken in units of\. In one space
dimension and with the field only inside the cavity, the sy
tem is defined by the action

S5E
0

t

dt8H 1

2
MṘ22V~R!1E

0

R

dx
1

2
@f t8

2
2fx

2#J . ~1!

Imposing dS50 under any variation of the dynamica
variables that vanishes att850 andt85t we obtain

MR̈1
]V~R!

]R
2

1

2
@f t

22fx
2#x5R50, ~2!

f tt2fxx50, 0<x,R, ~3!
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~4!

fx52Ṙf t at x5R.

Notice the dependence onṘ of the boundary conditions
If f(R)50 is imposed, the total energy, which is conserv
for a static cavity, is no longer constant forṘÞ0. Equation
~3! is satisfied byf(x,t) with

f~x,t !5G~ t2x!1G~ t1x! ~5!

and the positive sign between the twoG’s ensures that the
first boundary condition of Eqs.~4! is met. Substituting Eq.
~5! in the second of Eqs.~4! we obtain

G8@ t1R~ t !#5
12Ṙ~ t !

11Ṙ~ t !
G8@ t2R~ t !#. ~6!

For prescribed wall motion,G(z) for any z can be found
by using Eq.~6! and the null line method@5#. It is assumed
that the cavity is static fort<t0 with a lengthR(t0). This is
equivalent to saying that there is a static zonez<z05t0
1R(t0), in which G(z) is analytically known. One can find
the values ofG(z.z0) outside the static zone by first solvin
the algebraic equationz5teqv1R(teqv) for teqv and then find-
ing z2[teqv2R(teqv). This process, which is equivalent t
constructing a null line connecting the pointsz andz2 , can
be repeated many times until a pointzs in the static zone is
reached. The values ofG(z) and G(zs) are related through
Eq. ~6!. However, in the case under study, we do not have
general, a static zone, and we need to verify that knowing
initial conditions of the system is enough to implement t
above method.

We will show that in order to findf(x,t1dt) with 0
<x<R(t1dt), it is necessary and sufficient to knowG(z)
and G8(z) for t2R(t)<z<t1R(t) and R(t8) for t<t8<t
1dt. That is just what is required in order to have a uniq
solution of the system of two second order equations~2! and
~3!.

Sincef(x,t1dt)5G(t1dt2x)1G(t1dt1x), we need
to find G(z) and G8(z) for t1dt2R(t1dt)<z<t1dt
1R(t1dt). Now we have two cases: eitherz<t1R(t) or
z.t1R(t).

In the first case it is also true that

z>t1dt2R~ t1dt!>t2R~ t !
8663 ©2000 The American Physical Society
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as long asṘ<1, i.e., in all physical situations, so that w
already have the solution.

In the second case we have to solve the equationz5teqv
1R(teqv), as explained previously. We have

t1R~ t !<teqv1R~ teqv!<t1dt1R~ t1dt!,

which, with Ṙ>21, implies

t<teqv<t1dt.

Having foundteqv we can deriveG8(z) from Eq.~6! because,
with zeqv[teqv2R(teqv),

t2R~ t !<zeqv<t1R~ t ! uṘu<1,

so that again we have the necessary information to determ
the evolution of the field.G(z) can then be obtained by th
numerical integration ofG8(z). Note, however, that while
Ṙ51 still admits a solution for the field,Ṙ521 does not,
because the boundary condition~BC! requires G8@ t1dt
2R(t1dt)#5G8@ t12dt2R(t)#50, which in general is in-
consistent. Evolving backward in time, i.e., withdt,0, the
opposite would be true. Using the procedure above we h
studied the case withV(R)5 1

2 K(R2R0)2, solving, step by
step, Eq. ~2! numerically by a standard finite differenc
method.

As an initial condition for the field we choose the fund
mental mode of the static cavity with Eqs.~4! as the BC,
R(t0)5R0, andṘ(t0)50:

f5sinvt0 cosvx,
~7!

f t5v cosvt0 cosvx, v[
p

R0
.

For convenience we define the dimensionless parametea
and b: a[M /v, b[V/v5AK/M /v, and we set the am
plitude of the initial field to be 1. In the case of a wa
initially at rest and with a large mass compared to the ini
energy of the field, we expect the dynamics not to dep
considerably from the adiabatic one, that is, the wall’s m
tion should be well approximated by the solution of Eq.~2!,
with the field’s pressure term replaced by its static wall co
terpart and the solution of Eq.~3! by

f~x,t !5sinv~ t !t cosv~ t !x, v~ t ![
p

R~ t !
. ~8!

In order to check the reliability of our numerical imple
mentation of the algorithm, we first considered a large m
of the wall @a51000/p, b51/(10pA2)]. We verified that
the total energy is very well conserved and the motion of
wall is well reproduced by the solution of Eq.~2! with the
static wall solution for the field pressure.

We then used a smaller mass keepingK constant, i.e.,a
5100/p and b51/(pA20). As shown in Fig. 1, both the
wall motion and the field energy density become nontriv
An interesting feature is the concentration of the energy d
sity, shown in Fig. 1~c!. This is confirmed by the plot of the
energy density at two instancest5349R(t0) and t
ne

ve

l
rt
-

-

s

e

l.
n-

5697R(t0) in Fig. 2 compared with the static cavity solu
tion. The two peaks att5697R(t0) move in opposite direc-
tions, and their widths decrease in time. This phenomeno
even more evident witha510/p and b51/(pA2) @Fig.
3~a!#, showing a complex distribution of the peak locatio
and heights. The total energy of the system is the same in
cases.

Even for the case in Fig. 3~b! @a51000/p, b
51/(10pA2)], for which we observed the adiabatic evol
tion lasting for a long time aftert0, we can still, letting the
system evolve long enough, observe the squeezing of
field energy density in spite of the slow motion of the wa
Keeping K constant we found that the time at which th
focusing of the energy starts increases roughly linearly w
M. This suggests that, as one takes into account the b
reaction of the field on the wall motion, the long-time d
namics always becomes nonadiabatic. We have verified

FIG. 1. ~a! Wall position,~b! wall velocity, ~c! energy density of
the field atx50 for a5100/p, b51/(pA20).

FIG. 2. Spatial distribution of energy density att/R(t0)50 ~dot-
dashed!, 349 ~dashed line!, and 697~solid line! for a5100/p, b
51/(pA20).
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this remains true also changing the boundary conditions
that the field equals zero at the boundaries.

We believe that the origin of this phenomenon lies in t
mechanism of energy exchange between the wall and
field. To explain it we give the following qualitative argu
ment. Let us consider the interaction between the wave
side the cavity and the wall. At some instance, the peak
the wave will hit the wall, which can be moving either ou
ward or inward. In the former case, there will be a transfer
energy from the field to the wall, and the speed of the w
will increase slightly. The wave fronts following the pea
will lose more and more energy to the wall, since the w
moves faster with each successive collision. As a result
spatial width of the energy distribution decreases. When
wall moves inward, the wave gains energy from the w
and the wave fronts following the peak gain less because
wall moves slower with each successive collision. Again
width of the wave form decreases. After some time, t
effect leads to a drastic concentration of energy into nar
peaks.

Our argument depends only on kinematics and sho
therefore be applicable not only to waves but many ot
systems, such as a set of particles bouncing back and for
a dynamical cavity. For simplicity we consider the dynam
of a set of massless noninteracting particles, each ha
momentum and energypi , upi u (c51). Inside the cavity
they move unperturbed at the speed of light. If a parti
bounces on the static wall, its momentum changes sign.
movable wall is subjected to a harmonic potentialV(R)
5 1

2 K(R2R0)2. The particle momentumpi9 and the wall ve-
locity v9 after an interaction, which is assumed to be inst
taneous, are easily derived from energy and momentum
servation:

v95A~11v8!214p8/M21,

~9!

p95p81M ~v82v9!,

wherev8 and p8 are the wall velocity and particle momen
tum before the collision. The above equations are deri

FIG. 3. Energy density of the field atx50 for ~a! a510/p, b
51/(pA2), ~b! a51000/p, b51/(10pA2). Notice the time inter-
vals.
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assuming that the sign ofp9 is always opposite to the sign o
p8, which is true as long as the speed of the wall is less t
1 and 2M (12v8).p8 (p8.0).

We consider first a set of 1000 particles all with the sa
initial momentumpi50.01/R(t0) and a wall initially at rest
with M51000/R(t0) and V51/R(t0). Already after a few
interactions with the wall we could observe a regular trans
of energy from the last to the first particles to hit the wall.
Fig. 4~a! we show the momenta of the particles after a tim
t53221R(t0) as a function of their position. For clarity onl
positive momenta are plotted. It is remarkable that the fi
particle to hit the wall has gained more than one tenth of
total energy of the system. The above is a very special s
ation which, however, demonstrates the process of ene
transfer among particles.

We then extend this simple mechanical model to the c
of an infinite number of particles labeled with a continuo
index k, each having positionq(k) and momentump(k)dk.
In this way we can define an energy density

E~x,t ![E dkup~k,t !ud @q~k,t !2x#. ~10!

Not surprisinglyE(x,t) satisfies the wave equation inside th
cavity. We numerically simulate such a system choos
2000 particles. Initially, we put two particles at each of t
1000 uniformly separated sites, and the pairs have oppo
momenta p(k)5610@p2 cos2 pq(k)11#. In Fig. 4~b! we
plot E(0,t)R2(t), which is evidently similar to Fig. 1, al-
though the details of the evolution depend on how the p
ticles or the field interact with the wall.

After a long time we observe the formation of man
smaller peaks in the energy density. Further work is nee
to understand the problem of thet→` evolution of the sys-
tem.

For the scalar field an important situation to study is wh
V5p/R0, i.e., when the wall motion is in resonance with th
field inside the cavity. We have computed the solutions

FIG. 4. Classical particles in a dynamical cavity, withM
51000/R(t0), V51/R(t0), and initial momenta 0.01/R(t0). ~a!
Particle momenta att53221R(t0). ~b! Generalized energy densit
at x50.
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Eqs.~2! and~3! for various masses of the wall. In Fig. 5 w
plot the wall’s position and the field energy density atx50
vs time in the case ofa51000/p, R(t0)5R0, and Ṙ(t0)
50.1. In this case we chooset05R0/2 so thatḟ50 and the
initial functions Eq.~7! satisfy the boundary condition Eqs
~4! with Ṙ(t0)Þ0. In addition to the beats in the wall mo
tion, two features are important. One is the fact that the w
continues to return to its initial position after a timeT5R0.
This is different from the case of nonresonant wall para
eters where the back reaction of the field changes the
quency of the wall motion. Another remarkable effect, a
consequence, is the appearance of narrow peaks typical
resonantly driven wall motion@5,7,9#. This indicates the pos
sibility of transferring a large amount of energy to the fie
even with an external, nonresonant, driving force@8,10#. As
long as the frequency of the cavity wall isV5p/R0, it is
enough to push the wall at the instances marked by the
rows in Fig. 5, and this frequency depends on the mass o
wall and can be much smaller thanV; increasing the mas
decreases the frequency of energy exchange between
and field. This fact might help to bypass the experimen
difficulty of achieving a resonant driving force, i.e., at fr
quencyV, on a mirror in order to produce high frequenc
photons@8#.

We have verified that for a small mass,a510/p, the wall
period remains close toT52R0 so that the motion is still
resonant@7#. In Ref.@7# it has been shown that the method
null lines can also be applied to waves inside an oscillat
spherical cavity for any value of the angular momentum
However, when considering a self-consistent wall moti
the spherical symmetry is achieved only in the case os
waves, for which the radial (f) and angular parts can b
separated. Definingc[rf, so that c satisfies the one
dimensional wave equation, we can apply the null lin
method. The boundary condition forf, derived from the
action similarly to Eqs.~4!, is

Ṙf t@R~ t !,t#52f r@R~ t !,t#, ~11!

FIG. 5. ~a! Wall position and~b! energy density in a resonan
cavity with a51000/p andb51.
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which, however, forc translates to

Ṙc t@R~ t !,t#5
c@R~ t !,t#

R~ t !
2c r@R~ t !,t#. ~12!

If we want f to be finite atr 50 then we must requirec
50 at r 50, which is satisfied by writingc5G(t2r )
2G(t1r ). Equation~12! becomes

G8@ t1R~ t !#2hG@ t1R~ t !#

5g52
12Ṙ

11Ṙ
G8@ t2R~ t !#2hG@ t2R~ t !#, ~13!

with h[1/R(11Ṙ). An effective way to solve Eq.~13! nu-
merically for G@ t1R(t)# is to definez5t1R(t) and to ap-
proximateh and g with a constant value betweenz and z
2dz for a small enoughdz. Integrating Eq.~13! betweenz
andz2dz we obtain

G~z!5FG~z2dz!1
g

hGehdz2
g

h
, ~14!

which turns out to be more accurate than standard nume
integration.

The force of the s-wave field on the wall isFf

52pR2(t)@f t
22f r

2#. For Ṙ(t0)50 we set as initial condi-
tions for the fields

f~r ,t0!5
cosvt0

R0
2

sinvr

vr
,

~15!

f t~r ,t0!52
v sinvt0

R0
2

sinvr

vr
,

wherev.4.4934/R(t0) is chosen such thatf(r ,t0) satisfies
Eq. ~11! with Ṙ(t)50. As in the 1D case, we observe th
formation of high energy density regions, although in 3
this process is much slower. In Fig. 6 we plot the ene

FIG. 6. Energy density in a spherical cavity atr 5R(t) vs time
for a55/4.4934 andb5A8/4.4934.
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density at r 5R(t) vs time for a55/4.4934 and b
5A8/4.4934. These values of the parameters produce a c
pletely nonadiabatic evolution. For largerM or smallerK we
have to evolve the system for a much longer time in orde
observe the formation of high-energy peaks. However,
have verified that imposingf50 at r 5R(t) the peaks ap-
pear much earlier and the dynamics is very similar to
one-dimensional situation. With resonant wall paramet
V5p/R(t0), the features observed in 1D remain in 3
With the BC Eq.~11! it is also possible to have resonanc
with V equal to the difference between the frequencies of
nth mode and the fundamental mode of the cavity. Howe
such anV is close tonp/R(t0) if n is large, and such reso
nances are not easily distinguishable from the geome
ones@7#.

In summary we have applied the null lines method
study the dynamics of a scalar field inside a cavity who
wall is subjected to a harmonic force and the pressure du
the scalar field. We have found that the long time evolut
of the system is always nonadiabatic, regardless of the
rameters of the system. In particular there is an interva
time when the field develops narrow packets in energy d
sity that bounce back and forth inside the cavity, which c
be understood by means of a simple mechanical analog
sisting of a set of massless particles bouncing inside a o
dimensional box with a movable wall. Such a system c
firms our hypothesis that the wall motion provides
mechanism of energy transfer from low- to high-energy
gions. We have verified that the focusing of energy is a
bust phenomenon, being insensitive to the type of poten
for the wall and the presence of an external driving force
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For a quantized field previous works@8# have shown that
in the case of a prescribed slow wall motion no photon p
duction is achieved. Our results strongly suggest that
back reaction of the field may change significantly the e
lution of the system. In particular the second derivative
the wall position, which is one of the quantities that det
mine the number of quanta@8#, can be much larger than in
the adiabatic case, as it can be seen from the slope ofṘ in
Fig. 1. If the initial number of fundamental mode quanta
large, the peaks in energy density in the classical solu
can imply the production of several high-energy quanta.

We have also studied the special situation in which
wall frequency is equal to the fundamental frequency of
static cavity field. Remarkably the frequency of the wall m
tion does not change due to the field pressure, and thus
row peaks typical of a resonantly driven wall motion a
produced. A large amount of energy may be transferred
the field by providing mechanical energy to the wall wh
the amplitude of the oscillation reaches its minimum. Th
fact might help to bypass the experimental difficulty
achieving a resonant driving force on a mirror in order
produce high frequency photons@8#. In a further work we
would like to address the problem of whether periodical
lutions are admitted for this kind of system and for whi
values of parameters.

We would like to thank Dr. C. K. Law for his interest in
the paper and valuable discussions. This work was parti
supported by a Hong Kong Research Grants Council, G
No. CUHK 312/96P, and a Chinese University Direct Gra
~Project ID No. 2060093!.
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